16	(a)	Write 126	s as a produ	ict of its pri	me factors.			
								 (2)
	(b)	Find the 1	nighest com	nmon factor	(HCF) of 1	126 and 210	0	(—)
	(0)	i ilia tilo i	inghest con		(1101) 01	20 414 21	o	
								 (0)
								(2)