Question	Answer	Mark	Mark scheme	Additional guidance
19	6	P1	for starting process, by defining height, radius and using Pythagoras to form an equation for the slant height l eg height $= h$, radius $= \frac{3}{4}h$ and	Can use any other letter than h provided it is defined eg height = x
			$l^{2} = h^{2} + \left(\frac{3h}{4}\right)^{2} \left(=\frac{25}{16}h^{2}\right) \text{ or } (l =) \sqrt{h^{2} + \left(\frac{3h}{4}\right)^{2}} \left(=\frac{5}{4}h\right) \text{ oe}$	
			eg $r = 3x$ and $h = 4x$ and $l^2 = (3x)^2 + (4x)^2$	
		P1	(dep P1) for process to form a correct expression for the curved surface area in terms of a single variable,	May include area of circle
			eg $\pi \times \frac{3}{4}h \times \frac{5}{4}h'' \left(= \frac{15}{16}\pi h^2 \right)$ or $\pi \times 3x \times 5x''$ where $h = 4x$	$\pi \times \left(\frac{3}{4}h\right)^{2} + \pi \times \frac{3}{4}h \times \frac{5}{4}h'' \left(=\frac{24}{16}\pi h^{2}\right)$
		P1	for forming and simplifying a correct equation to find height, eg $\frac{24\pi}{16}h^2 = 54\pi$	
		A1	cao	