Question	Answer	Mark	Mark scheme	Additional guidance
10	Result shown	M1	for method to find the number of yellow counters in bag A , eg $x \div 3 \times 5 \ (= \frac{5x}{3})$ or for method to find the total number of counters in bag A 8x	
			eg $x \div 3 \times 8 \ (= \frac{6x}{3})$ or for starting to work with ratio using algebra eg 3y, 5y	Could use any letter other than y apart from x
		M1	(dep) for method to find the total number of counters in bag B , eg $(x + \frac{5x}{3}) \div 2 (= \frac{4x}{3})$ or $\frac{8x}{3} \div 2 (= \frac{4x}{3})$ or $(3y + 5y) \div 2 (= 4y)$	For the method marks condone decimals that are rounded or truncated to 1dp
		C1	for complete method showing that total number of counters in bag A and bag B is $4x$, eg $\frac{8x}{3} + \frac{4x}{3} = 4x$ or $3y + 5y + 4y = 12y$ and $12y \div 3y \times x = 4x$	For the C mark only accept values that are shown to be recurring and allow $3.9x = 4x$