		20	47	84	131		
(a) Find an expression, in te	rms of	n, for the	e nth ter	m of thi	s sequence.		
							(
The terms of a different sequal constant.	ience ai	re given	by the r	rule u_{n+1}	$=ku_n+k$ who	ere k is	(
a constant.	ience ai	re given	by the r	$\text{rule } u_{n+1}$	$=ku_n+k$ who	ere k is	(
The terms of a different sequal constant. Given that $u_1 = 9$ and $u_2 = 4$ (b) find the value of u_4	ience ai	re given	by the r	ule u_{n+1}	$=ku_n+k$ who	ere <i>k</i> is	(
a constant.	ience ai	re given	by the r	rule u_{n+1}	$=ku_n+k$ who	ere <i>k</i> is	
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	rule u_{n+1}	$=ku_n+k$ who	ere k is	(
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	ule u_{n+1}	$=ku_n+k$ who	ere k is	(
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	ule u_{n+1}	$=ku_n+k$ who	ere k is	(
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	Tule u_{n+1}	$=ku_n+k$ who	ere k is	
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	rule u_{n+1}	$=ku_n+k$ who	ere k is	
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	rule u_{n+1}	$=ku_n+k$ who	ere k is	(
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	ule u_{n+1}	$=ku_n+k$ who	ere k is	
a constant. Given that $u_1 = 9$ and $u_2 = 4$	ience ai	re given	by the r	ule u_{n+1}		ere k is $u_4 = \dots$	

15 Here are the first five terms of a quadratic sequence.