Question	Answer	Mark	Mark scheme	Additional guidance
18	Proof	M1	begins proof to show that triangles ABO and CBO or triangles ABD and CBD are congruent by giving one pair of equal sides or equal angles with reason	Where <i>D</i> is point such that <i>BOD</i> is diameter
		M1	for different pair of equal sides or angles with reason	
		C1	for full proof that triangles ABO and CBO are congruent, SSS, or triangles ABD and CBD are congruent, RHS, and therefore angle ABO = angle CBO	
			AB = CB (given) BO (or BD) is common AO = CO radii of circle angle BAD = angle BCD angles in a semicircle are 90 ($BO = AO = CO$ radii of circle) counts as two sides with reasons	
			OR	
		M1	draws OA , OC and AC and labels angle $OAC = x$ and angle $OCA = x$ with reason given, $AO = CO$ radii of circle and base angles of an isosceles triangle are equal or $BAC = BCA$ since ABC is isosceles	
		M1	shows $OAC = OCA$ and shows $BAC = BCA$ and uses these to show $OAB = OCB$ with all reasons given	
		C1	for full proof concluding with angle $ABO = y$ and angle $CBO = y$ with reason given, eg $OA = OB = OC$ radii of circle and OBC and OAC are isosceles	