Question	Answer	Mark	Mark scheme	Additional guidance
19 (a)	$\frac{1}{18} \left(8k\mathbf{b} + 10\mathbf{b} - \mathbf{a} \right)$	P1	for a correct expression for \overrightarrow{CB} or \overrightarrow{BC} eg, $\overrightarrow{CB} = -k\mathbf{b} - \mathbf{a} + \mathbf{b}$ or $\overrightarrow{BC} = -\mathbf{b} + \mathbf{a} + k\mathbf{b}$	All vectors must be clearly identified
		P1	for a correct expression for \overrightarrow{CN} or \overrightarrow{BN} or \overrightarrow{NC} or \overrightarrow{NB} eg, $\overrightarrow{CN} = \frac{5}{9} (-k\mathbf{b} - \mathbf{a} + \mathbf{b}) \text{ or } \overrightarrow{BN} = \frac{4}{9} (-\mathbf{b} + \mathbf{a} + k\mathbf{b})$ or $\overrightarrow{NC} = \frac{5}{9} (-\mathbf{b} + \mathbf{a} + k\mathbf{b})$ or $\overrightarrow{NB} = \frac{4}{9} (-k\mathbf{b} - \mathbf{a} + \mathbf{b})$	This mark implies the previous one
		P1	for a correct unsimplified expression for \overline{MN} eg $\frac{1}{2}\mathbf{a} + k\mathbf{b} + \frac{5}{9}(-k\mathbf{b} - \mathbf{a} + \mathbf{b}) \text{ oe or } -\frac{1}{2}\mathbf{a} + \mathbf{b} + \frac{4}{9}(-\mathbf{b} + \mathbf{a} + k\mathbf{b}) \text{ oe}$	
		A1	for $\frac{1}{18} (8k\mathbf{b} + 10\mathbf{b} - \mathbf{a})$ oe eg $\frac{5}{9}\mathbf{b} + \frac{4}{9}k\mathbf{b} - \frac{1}{18}\mathbf{a}$	Must have a maximum of 3 vector terms, a , b , and <i>k</i> b
(b)	No, with explanation	C1	No with supporting reason ft (a) Acceptable reasons: No, since $\frac{1}{18}(8k\mathbf{b} + 10\mathbf{b} - \mathbf{a})$ is not a multiple of \mathbf{b} No, as N is not the midpoint of BC No, they are not multiples of each other No, does not factorise to \mathbf{b} Not a multiple of OB OB doesn't have an \mathbf{a} Not acceptable reasons: Yes No, they don't share the same multiples OB doesn't go into MN	