Question	Answer	Mark	Mark scheme	Additional guidance
6	Yes, supported by	P1	for a process to find the number of sweets Tina gives to Andy, 14 - 7 - 2 (6)	May work with an equivalent ratio $eg 21 \cdot 126 \cdot 294$ and do
	concer inguies		eg $14 \div 7 \times 3 = 0$ or for a process to work with fractions of the total to find fraction given to	$294 \div 7 \times 3 (= 126)$ as a first
			$\frac{14}{10} \times \frac{14}{2} \times \frac{3}{2} \left(-\frac{2}{2}\right)$	step
			Andy, eg 21^7 (7)	May work in multiples of x for
			or for dividing a given number (eg 441) in the ratio 1 : 6 : 14 (= 21 : 126 : 294)	all marks
		P1	for a process to find number for Andy and Tina after first exchange, eg A = $1 + "6" (=7)$ and T = $14 - "6" (=8)$ or for a process to find the number of sweets Tina gives to Luke	
			eg $(14 - "6") \times \frac{12.5}{100} (=1)$	
			or for a process to work with fractions of the total to find fraction given to	
			Luke, eg for $\frac{(14 - 6'')}{21} \times \frac{12.5}{100}$	
			or process to work out the number of sweets given to Andy and Luke for	
			their total, eg "294" \div 7 × 3 (= 126) and ("294"–"126") $\times \frac{12.5}{100}$ (= 21)	
		P1	for a process to find the final amounts or final shares for at least two of Andy, Luke and Tina	
			eg two of $1 + "6" (= 7)$, $6 + "1" (= 7)$, $14 - "6" - "1" (= 7)$	
			$\mathbf{or} \ \frac{1}{21} + \frac{"2"}{7} \left(= \frac{7}{21} \right), \ \frac{6}{21} + \frac{"1}{21} \left(= \frac{7}{21} \right), \ \frac{14}{21} - \frac{"2}{7} - \frac{"1}{21} \left(= \frac{7}{21} \right)$	
			or "21" + "126" (= 147) , "126" + "21" (= 147) , "294" – "126" – "21" (= 147)	
		C1	Yes, supported by full working and accurate figures for Andy, Luke and Tina	Accurate figures with no supportive working scores 0